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Summary 

Solutions of the biharmonic equation governing steady two-dimensional viscous flow of an incompressible 
Newtonian fluid are obtained by employing a direct biharmonic boundary integral equation (BBIE) method in 
which Green's theorem is used to reformulate the differential equation as a pair of coupled integral equations 
which are applied only on the boundary of the solution domain. 

An iterative modification of the classical BBIE is presented which is able to solve a large class of (nonlinear) 
viscous free surface flows for a wide range of surface tensions. The method requires a knowledge of the 
asymptotic behaviour of the free surface profile in the limiting case of infinite surface tension but this can usually 
be obtained from a perturbation analysis. Unlike space discretisation techniques such as finite difference or finite 
element, the BBIE evaluates only boundary information on each iteration. Once the solution is evaluated on the 
boundary the solution at interior points can easily be obtained. 

1. Introduction 

Free surfaces occur in a large range of physical phenomena - gravity waves, flow through 
porous media, forces on floating bodies, etc. In all such cases, the problem is complicated 
by the fact that the domain of splution has an unknown boundary on which known 
conditions are to be imposed. For potential problems, these are the kinematic and 
dynamic conditions whereas for viscous flows there is, in addition to the kinematic 
condition, the somewhat more complex requirement of continuity of the stress tensor 
across the free surface. 

Many authors have successfully tackled such problems using a variety of numerical 
techniques, for example the finite difference (FD) method, the finite element (FE) method, 
boundary fitted coordinates, Green's functions etc and an excellent review of these 
methods is given by Yeung [1]. 

This paper deals with the classical boundary integral equation (BIE) method which has 
the advantage over space discretisation techniques of reducing the dimension of the 
problem by one, the equations having been integrated once analytically by application of 
Green's theorem. This, together with a knowledge of the fundamental solutions of 
Laplace's equation (and the biharmonic equation, when the flow is viscous) enables us to 
reformulate the original differential equation and boundary conditions as a coupled 
system of integral equations applied on the boundary only. The effect of this reformula- 
tion is to greatly reduce requirements in both computer storage and code [2]. Thus the BIE 
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has the advantage over the FD and FE methods in that information regarding flow 
variables is evaluated only on the boundary and not at a number of interior points. 

Successful BIE solutions of potential (Laplacian) free surface flows were obtained by 
Liggett [3], Niwa et al. [4] and Longuet-Higgins and Cokelet [5]. The first two authors 
solve for the profile of the seepage of groundwater through a porous dam. The third 
author employs a time-dependent Lagrangian BIE formulation for following the forma- 
tion and evolution of breaking waves. In these works the free surface location is obtained 
by an iterative process based on the satisfaction of the kinematic condition which provides 
an explicit relationship between known BIE variables. For viscous flows however, the 
available conditions provide no such explicit relationship. 

In the present work a direct biharmonic BIE (BBIE) method is presented in which the 
viscous flow variables are stream function, velocity, vorticity and vorticity gradient. We 
shall later see that using this formulation we may obtain explicit forms for the kinematic 
and shear stress conditions in terms of the BBIE variables. However, the normal stress 
condition includes the velocity variable in terms of a second spatial derivative and so care 
must be taken when evaluating this derivative numerically. 

The most recent developments in the field of viscous free surface flows appear to have 
been achieved using variations and modifications of the FE method, see for example [6-9]. 
The work of Silliman [6] pioneered problems in slot coating flow and this was extended by 
Saito and Scriven [8] to accommodate film flows with highly bent menisci by combining 
polar and Cartesian parametrisations of the meniscus shape. By performing an integration 
by parts of the equations of motion across the free boundary Ruschak [7] was able to 
eliminate the explicit appearance of surface curvature in the equations, thus allowing a 
piecewise linear approximation of the surface profile even when surface tension effects are 
dominant. Frederiksen and Watts [9] presented a more sophisticated approach which was 
able to deal successfully with time dependent viscous flows with free surfaces. Their 
technique was essentially an implicit time-stepping method and so was stable even for 
relatively large time steps. 

In problems where the location of the free surface is unknown, this fact is "com- 
pensated" for by the knowledge of three boundary conditions on the free surface: on fixed 
boundaries one is only ever supplied with two such conditions. However, one may apply 
only two of the conditions directly into any particular Jaumerical scheme and use the third 
as the criterion for the location of the free surface. All of the papers [6-9] apply the 
kinematic condition as an essential free surface condition but vary in their choice of 
second condition: some choose that on shear stress, others that on normal stress. In the 
absence of any detailed analysis of the effects of this choice we must treat the question of 
which second condition to apply as one which remains unresolved. In the present work we 
enforce the kinematic and shear stress conditions and iterate on the normal stress 
condition to obtain the free surface location. 

The iterative scheme applied in this paper requires a knowledge of the form of the free 
surface in the limiting case of large surface tension, T say. This may be obtained in the 
manner described by Richardson [10] by expressing the flow variables and surface profile 
as expansions of the parameter C = 1 / T  so that C << 1. Insertion of these expansions into 
the known boundary conditions yields the asymptotic form of the free surface for large T 
and it is this form which is used to initiate the iterative procedure, whatever the value of T. 
Thus we would expect the convergence to be faster for the larger values of T. The method 
is therefore suited to all such problems for which this asymptotic behaviour is obtainable. 

The algebraic system of equations generated by the BBIE is nonlinear not in the 
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classical sense - i.e. in that the flow variables occur as explicit nonlinear terms - but 
rather in that the BBIE matrix of coefficients of the flow variables are themselves 
dependent upon the location of the free surface and so are also unknown. Thus standard 
iterative techniques for solving nonlinear equations will not suffice. An algorithm will be 
presented which converges on the correct boundary location as well as solving for the 
unknown flow variables. 

In order to test the application of this BBIE method to viscous free boundary problems 
we consider the problem of a two-dimensional jet expanding from between two semi 
infinite parallel plates. A detailed analytical study of this problem has been made by 
Richardson [10] and there are FE calculations due to Ruschak [7] which we will use for 
comparison. The results from the present work and those from [7] are seen to be in good 
agreement. 

2. Formulation 

Governing equations 

For steady state two-dimensional creeping flow of an incompressible Newtonian fluid we 
obtain, from the Navier-Stokes equations (neglecting inertia terms): 

v P  = V2u, (1) 

v . u = 0 ,  (2) 

where P and u are the nondimensional fluid pressure and velocity respectively. Introduc- 
ing the stream function ~b, the x and y components of velocity are then given by 

u = % ,  o = - ~ x ,  ( 3 )  

respectively. From Eqns. (1), (2) and (3) it may be shown [11] that ~ satisfies the 
biharmonic equation 

V4+ = O. (4) 

Introducing the vorticity 0~ we rewrite Eqn. (4) in its coupled form 

= (5) 

v 2,0 = 0 .  ( 6 )  

To solve Eqns. (5) and (6) in the region ~2 enclosed by boundary 0~2 we first transform 
them into their equivalent integral representations. Denote the field point at which the 
solution is required by p(xo, Yo) and the general position on the boundary by q(x, y) so 
that p ~ f~ + 0~2 and q ~ Of]. Define G 1 and G 2 to be the fundamental solutions of 
Laplace's equation and the biharmonic equation respectively. Then 

xy2GI(P, q) = 8([P - ql), (7) 

•4G2(p ,  q)  = 8(IP - ql) (8) 



332 

where 

[p-ql=[(X-Xo)2+(y-yo)2] 1/2 (9) 

and 8 is the Dirac delta function. The required fundamental solutions are then 

GI(p' q) = 2@ loglp - q[i (10) 

1 
G2(p, q) = ~-£~IP - ql2[loglp - q l -  1]. (11) 

Applying a biharmonic form of Green's second identity [12] to the functions + and G 2 
and employing the singular behaviour of G 2 as p ~ q gives 

~(p)tP(p)= foa(~P(q)Gl.(p, q)-q~.(q)Gl(p, q) 

+~o(q)G2.(p, q)-%(q)G2( p, q)}dq (12) 

where Eqns. (5) and (6) have been used and the subscript n refers to differentiation with 
respect to the outward normal to f], p ~ f] + 3f], q E 8f] and dq denotes the differential 
increment of Of] at q. The function ~(p) is obtained by a study of the behaviour of the 
fundamental solutions (10) and (11) as p ~ q and is given by 

{ l~a  i fp  ~ f] + 8f] 
( ( p )  = i fp  ~ Of] 

i fp  ~ f] 

(13) 

where a is the angle included between the tangents to Of] on either side of p. Now 
applying Green's second identity [12] to the functions o~ and G 1 and employing the 
singular nature of G 1 as p ~ q gives 

~(p)~o(p) =f0a(  ~o(q)Gl,,(p, q) - ¢%(q)Gl(p, q)}dq (14) 

where now Eqn. (6) has been used. 
In the ensuing analysis, the subscript t denotes differentiation with respect to the unit 

tangent to 3f] and the subscript s with respect to the coordinate measured anticlockwise 
along 8f] from some fixed point on 3f]. Here the (t, n) axes form a right-handed set so 
that, in an obvious notation, 

V~,n)f = VL,y)f (15) 

for any sufficiently differentiable function f .  
Equations (12) and (14) form the basis of the BBIE method. Solution of these equations 

depends upon the knowledge of a set of boundary conditions in terms of the BBIE 
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variables of stream function +, boundary velocity +n, vorticity o~ and normal vorticity 
gradient %. 

Boundary conditions 

To illustrate the BBIE formulation we shall consider the following specific problem, due 
originally to Richardson [10]. 

Incompressible Newtonian fluid flows from left to right in the semi-infinite channel 
bounded by the no-slip planes - oo < x ~< 0, y = _+ 1. As x ~ - ~ the flow tends to a 
Poiseuille velocity profile. For 0 < x < + ~ the flow is bounded, in the absence of gravity, 
by the free surfaces y = + ~ ( x )  i.e. the flow is symmetric about y = 0. As x ~ ~- oo the 
velocity profile is constant throughout the region bounded by the upper and lower free 
surfaces. By employing a symmetry argument about the channel centreline y = 0 we need 
solve the problem only in the upper half channel y > 0, noting that the channel centreline 
is a boundary supporting zero tangential shear. The kinematic condition on the upper free 
surface y = ~/(x) merely suggests that the free surface is a streamline - since then no fluid 
particles may cross the free surface. Suppose U and V are respectively the tangential and 
normal velocity components on the free surface y = ~/(x). Then the shear stress condition 
at the free surface (assuming the region ]Yl > I~/(x)] to have negligible viscosity) gives 

aU aV 
o,, = -3--~-n + --~- = 0 (16) 

which, after inserting the relations in (3) gives 

+ , ,  - + , ,  = 0 .  ( 1 7 )  

Furthermore, f rom Eqns. (6), (15) and (17) we obtain 

oa = 2+,,. (18) 

Coyne and Elrod [13] show that 

~Tt0a d d = ~ss = cos/3d-Tx ' (19) 

02 ~-- d 2 _ O 
(20) 

a t2  a~ d s  2 K 8~2' 

where K is the local curvature of the free surface and/3 is the anti-clockwise angle between 
the tangent to the free surface and the x axis. Hence we have 

K = - r / '  cos '~8, (21) 

tan/3 = ~' (22) 

where a prime denotes differentiation with respect to x. From Eqns. (18), (20) and the 
kinematic boundary condition (essentially +s = +ss = 0) we obtain 

o~ = - 2 K + . .  ( 2 3 )  

Hence Eqn. (23) provides a linear relationship between the boundary vorticity and 
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velocity and is therefore the required form of the shear stress condition in terms of BBIE 
variables. 

The kinematic and shear stress conditions may thus be obtained explicitly in terms of 
the BBIE variables and so may readily be enforced in Eqns. (12) and (14). The remaining 
condition on normal stress is used as the iterative criterion. We require the normal stress 
to be balanced by surface tension and fluid pressure so that 

- T~ = Pa + a.n (24)  

where T is the nondimensional surface tension, Pa is the ambient pressure and o,n is the 
normal stress component. Differentiating Eqn. (24) with respect to t, substituting for % ,  

and employing the relations in (3) gives 

=p, + 2+ . .  (25) 

whence, by virtue of Eqns. (1), (20) and (23) 

T x  t = ~o, - x¢o + 2 ~  . . . .  (26) 

This expression involves the vorticity, vorticity gradient and the second derivative of the 
boundary velocity with respect to s. Note that condition (26) contains qJ,s~ in preference to 
~p,,,  since the former may be numerically evaluated in terms of the BBIE values of q~, 
available on the free surface. The required boundary conditions are therefore 

= 1 ,  ~by=0 o n y = l ,  x 4 0 ,  (27a) 

q~ = 0, ~0 = 0 on y = 0, (27b) 

~bx~0 , ~ y ~ ( 1 - y  2) a s x ~ - o e ,  (27c) 

~x -~  0,  lpy ~ 1/~/~ as x ~ + oe, (27d) 

~b= 1, ~0 = -2x~p, t 
T x  t = o~ n - t¢¢o  + 2 q J , s  s J ony  = ~(x) ,  x > 0, (27e) 

SO that the full problem specification is as shown in Fig. 1. Conditions (27a) give the 

y = l  

y = O  

f r e e  s u r f a c e  
n 

~ Yi 1~(x) t S 
n O - S l i p  p l a n e  S _ - -  

I I I I I I I  I I I I I I I I I  I I I I l i i l l l l l l l i l l l l l l l l l l l l l l l  slug 
T 

I P o i s e u i l l e  ;,~ f l o w  

Iflow =0 
r 

_ L a x i s  o f  s y m m e t r y  

x = - 3  x = O  

Figure 1. Problem geometry and boundary conditions. 
x = 3  
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steady stream potential and no-slip velocity on the upper plane, whilst conditions (27b) 
are those due to symmetry about the channel centreline. The enforced upstream Poiseuille 
flow is given in (27c); the downstream slug flow in (27d). The constant ~7~ in (27d) is the 
semi-jet width far downstream. Conditions (27e) are those applied on the free surface. 
Thus at each point on ~2 at least two boundary conditions in terms of BBIE variables are 
known. 

Numerical solution 

Applying Eqns. (12) and (14) at the points ?/~ 0f~ and q ~ 0f~ provides the following 
coupled nonlinear (because the boundary 0f~ is as yet unknown) integral equations 

faa{ +( q)G,,( ~t, q)-  ~/n( q)Gl( q, q)+ ~0 (q)G2,(~/, q ) -  %(q)G2(~, q)}dq 

- ~ ( ~ / ) ¢ ( q )  = 0, q, 7/E 0~, (28) 

fan {~°(q)Gl"(gt'q)-%(q)Gl(q'q)}dq-~(~l)°~(~t)=O' q,~Oa.  (29) 

Solution of the coupled Eqns. (28) and (29) subject to the boundary conditions (27) then 
provides a complete set of boundary information at each point q E Of~. At this point note 
that conditions (27d) and (27e) are necessarily applied at finite distance, X say, both 
upstream and downstream of the separation point where the free surface leaves the no-slip 
plane, hereafter referred to as S. These conditions were applied at positions x = _+ X, the 
value of X being varied until a settled solution was obtained. It was found that taking 
X > 3 caused negligible change in the results presented. In fact, for this problem, virtually 
all flow characteristics change most rapidly in the region - 1  ~< x ~< 2 (see Richardson 
[10]). 

The complete set of boundary information thus obtained is inserted into Eqns. (12) and 
(14) to provide + and ~0 at the general field point p E ~ + Of L In practice Eqns. (28) and 
(29) may rarely be solved analytically. We therefore adopt a numerical solution technique 
analogous to that employed by Symm [14] for solving Laplacian boundary value prob- 
lems. The following description is that of the classical BBIE. Modification to include the 
effects of the free surface will be introduced later. 

The boundary Of~ is subdivided into N straight line segments O~j, j = 1 . . . . .  N on which 
the functions ~, ~,, ~ and ~n take the piecewise-constant values ~pj, q,,j, % and %2" A 
discretised form of Eqns. (28) and (29) is then applied at the midpoint q = qi, i = 1 . . . . .  N 
of each interval. This generates a set of 2N simultaneous equations in the 2N unknown 
values of +j, +,j, % and ~,j .  Solution of these algebraic equations then determines the 
remaining 2N boundary conditions which supplement the original boundary conditions 
(27). Applying the discretised forms of Eqns. (12) and (14) at the general field point 
p ~ f~ + ~2 determines ~p(p) and w(p) at any point in the solution domain. 

Discretisation of the integral equations (28) and (29) means that, for example, the first 
term in the integrand in Eqn. (28) is approximated according to the following rule: 

N 

fo aP(q)Gx,,(Yl, q)dq ~ E ~jf~ Gx,,(cl, q)dq" (30) 
j=a nj 
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All of the integrals in the discretised equations were evaluated analytically to maintain 
accuracy at the present stage: the integrals associated with the G 2 and G2, functions have 
previously been obtained numerically [15]. Details of the analytic integrations are given by 
Kelmanson [16]. 

It now remains to obtain the position of the free surface before using the above scheme 
to solve for the general flow. 

Boundary location algorithm 

As the surface tension tends to infinity, the free surface becomes a shear-free straight line 
extension of the no-slip plane y = 1, x < 0. A study of the outward normal force on this 
shear-free surface reveals that this force is everywhere positive, suggesting that a two 
dimensional jet emerging from between parallel no-slip planes into an inviscid atmosphere 
at zero Reynolds number would expand. Since in the absence of gravity there is no 
mechanism to counteract this expansion, we expect the surface profile y = 7(x) ,  x > 0 to 
satisfy 

7(0) = 1, (31a) 

d n 

d x . 7 ( x ) ~ O a s x  ~ oe, all n >i 1. (31b) 

Defining the swell of the jet, a, as the increase in semi-channel width far downstream of S 
we have 

7oo = 1 + ,, (32) 

where 7~ was introduced in condition (27d). It is convenient to introduce a functional 
form for 7 (x)  since then the value of xt in the normal stress boundary condition (26) may 
be evaluated analytically (via Eqns. (19) and (21)), thus preserving accuracy. We proceed 
to try to obtain such a form. 

Richardson's [10] solution for large surface tension was obtained by expressing the free 
surface location as the linear expansion 

= 1 + c T , ( x )  + o(c) (33) 

where C = 1/T  so that C << 1. The substitution of Eqn. (33) into the stress conditions on 
the free surface gives 7 '(0)> 0 so that the free surface has a finite gradient at the 
separation point S. However, the analysis of Michael [17] shows that 7'(0) is necessarily 
zero if the normal stress on the free surface is to remain bounded at S. Moffatt  [18] arrives 
at similar conclusions from the study of a flat plate being drawn into the free surface of a 
viscous fluid. This leads Richardson [10] to conclude that the perturbation in this region is 
necessarily singular, and that a more detailed understanding of the separation process is 
required before a satisfactory study of this region can be completed. 

In the light of this uncertainty, we are unable to take account of the true nature of the 
solution in this region and so we must expect our numerical results to be in error near S. 
Since the main aim of this paper is to demonstrate how the BBIE method may be 
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extended to solve free surface viscous flow problems, we shall employ the formal 
expansion of Eqn. (33) as afirst approximation in the iterative scheme. Substitution of this 
expansion into the normal and shear stress boundary conditions provides the form of ~h, 
which requires numerical evaluation. We find that ~a(x) in this case can be approximated 
by 

~l(X) ~--- 0.356 t a n h [ x , ( x ) ]  (34) 

where , ( x )  is a monotonic decreasing function of x with e(0) = 2.13 and , ( x )  --* 1.32 as 
x ~ ce. Inserting into Eqn. (34) the function 

, ( x )  = ,~  + (% - , ~ )  e x p ( - y x )  (35) 

with e 0 = 2.13, c~ = 1.32 and "/= 1.02, gives close agreement with the results in [10]. 
The results of Eqns. (33), (34) and (35) suggest that we should approximate our free 

surface by functions of the form 

~ ( x ) =  1 + a tanh[x , ( x ) ] .  (36) 

Then choosing a = 0.356 a n d ,  = e(x) as suggested by Eqn. (35) should provide us with a 
first approximation to the free surface provided we are not in the neighbourhood of S. 
Note that the exact values of %, ,~  and 7 in Eqn. (35) are not important at this stage but 
serve to provide initial values for the ensuing iterative algorithm. 

Now the geometry of the free surface describes by Eqn. (36) is such that 7/'(0) ~ 0 and 
therefore it does not satisfy the physical requirement of Michael [17]. We must assume 
that the behaviour of Eqn. (36) applies to the free surface only at distances greater than 
some small parameter, 8 say, away from S. In 0 < x < 8, ~ ' ( x )  changes rapidly from 
~/'(0) = 0 to ~'(8) finite. The unresolved question is then as to the magnitude of 8. Our 
approximation here is to assume that 8 is infinitesimally small and that the free surface 
has infinite curvature at the point of separation. In this work no asympototic behaviour on 
the solution near S has been enforced, and the above approximation is seen to be a 
sufficent starting point for the ensuing iterative algorithm. 

Step 1. Specify a required nondimensional surface tension T. 

Step 2. Letting F represent the iteration number, specify M distinct free surfaces of the 
form suggested by Eqns. (34) and (35), namely 

]~mi-(X) = 1 +a,,, tanh[X'mF(X)], m =  1 . . . . .  M (37) 

where a m is the swell o f  the surface ~'/mr on the iteration F. In order to encourage 
convergence, the values of a m were chosen in the range 0 < a,, ~< 0.20, the lower bound 
being a physical necessity and the upper being strongly suggested by the FE results of 
Ruschak [7] and Patten and Finlayson [19]. In the absence of any FE results for 
comparative purposes we would merely have expanded the range: in this case the FE 
results were used to aid the iterative process. In Eqn. (37) we also have 

'mI ' (x)  = '~F -4-(,O F -- ,m~i -) exp(-- ' /mrX).  (38) 

If F = 1, then regardless of T we allow '..1,° 'ma~ and ~'ml to vary in the range of the 
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parameters suggested by the analytic solution for large T. This range of variation is 
initially taken to be reasonably large so as not to enforce too rigid a form on the free 
surface profile. In fact, for F = 1, the ranges 1.4 ~< c°1 ~< 2.0, 0.7 ~< emil ~< 1.3 and 1.0 ~< ~,,,~ 
~< 1.7 were specified, for each T. 

Step 3. With ~/,,r specified, solve the problem via the classical BBIE enforcing the first two 
conditions in (27e) on the free surface. This generates the (incorrect) values of ~,,  ~o and 
~% on the free surface. It is found that the discrete values of q~, oVer the section of the free 
surface not in the neighbourhood of S admit a fitted curve of the form 

• . ( x )  = ax b (39) 

where a = a(m, F, T )  and b = b(m, F, T)  are characteristic of the current free surface, 
and a, b > 0. The continuous function q~, in Eqn. (39) is fitted to the discrete values of ~ 
by taking the logarithm of Eqn. (39) and using standard least-squares curve fitting 
procedures, details of which may be found in any elementary text on orthonormal 
functions. The approximation ~pn was found to satisfy 

1 ~t', < 
- -  ~ n  10-4' all F (40) 

at each surface node at which Eqn. (43) was applied, showing the smoothness of the 
discrete values of ~Pn. We may now obtain accurate values of ~P,ss for insertion into the 
normal stress boundary condition (26). To achieve these, we use Eqns. (19) to obtain 

d 
~P~s, = "I',ss = cos f l ~ x  [cos B-d--X-X q', ]. (41) 

Then Eqns. (39) and (41) provide us with the required values of ~P,ss- 

Step 4. At each of K "test nodes" (x  k, Yk) on the free surface ~mr evaluate the residue 

R k m r = W , - x w + 2 ~ , s s - T x t ,  k =  1 , . . . ,K ,  (42) 

which effectively measures the extent to which the normal stress condition is satisfied, 
Rkm r vanishing when the correct surface is obtained. 

Step 5. Obtain the real constants flmr, m = 1 . . . . .  M which enable a vanishing linear 
combination of the residues to be obtained at each test node (x  k, Yk), k = 1 . . . . .  K. That is, 
find the flmr which satisfy 

Y~. Rkmrflmr=O, k =  l . . . . .  K 
m = l  

M 

E /~mI "=1 
m=l 

all F. 

(43) 

(44) 

Equations (43) and (44) may be solved simultaneously for unique values of fl.,r provided 
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we adhere to the additional constraint K = M -  1. Equation (44) is a scaling equation 
which provides unique values of flmr for Step 6. 

Step 6. Take ~/r as the new approximation to the free surface where 

M 

gr = ~ fl,,r%~r, all F (45) 
m = l  

so that were the problem linear, ~r would be the correct free surface. Note that Eqn. (45) 
shows that Eqn. (44) is in fact one of mass conservation. • 

Step 7. In exactly the same manner as was used to obtain %, c~ and 7 from the analytic 
solution, we fit a curve of the form 

f/r(X) = 1 + fir tanh[xgr(X)]  (46) 

to the surface just obtained. Here fir is the swell of the "modified" surface, and 

gr(X ) = g~ + (go _ g~) exp(-~Tr x)  (47) 

where the values of go, g~ and "Tr are obtained by the aforementioned curve-fitting 
procedure. 

Step 8. Evaluate the residues/~kr, say, at the nodes (xk, Yk), k = 1 . . . . .  K on the modified 
surface gr- 

Step 9. The iteration is considered to have converged when both 

(a )  1 - ffr-lar < 10-4'  (48) 

(b)  [/~kr I < 2 × 10 -4, k = 1 , . . . , K .  (49) 

If the criteria (48) and (49) are not satisfied, proceed to Step 10. If they are, the iteration is 
complete. 

Step 10. Pass on to the next iteration number, A = I" + 1, and update the values of the 
parameters in Eqn. (38) by varying £mA0 in the neighbourhood of go, iEmAOZ in" the neighbour- 
hood of ~ ,  and ~tmA in the neighbourhood of "/r for each m = 1 . . . . .  M. (These variations 
are restricted to ever-decreasing ranges as the iteration proceeds.) Return to Step 2. 

As in many iterative schemes, convergence is not necessarily guaranteed. However, the 
algorithm was tested over the large range of surface tensions 10-3-10 + 3: essentially from 
negligible to infinite T. For each T, the convergence of the numerical scheme was checked 
by employing discretisations comprising N = 70, 140 and 280 nodes. Choosing M = 7 and 
K = 6 was seen to be sufficient to obtain consistent solutions for the above parameter 
ranges. Obviously, M (and therefore K )  would have to be increased for free surfaces on 
which the formation of waves was expected. 
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Figure 2. Free surface profiles for varying surface tensions T: (a) 0.001, (b) 0.01, (c) 0.1, (d) 1.0, (e) 10.0, (f) 
100.0, (g) 1000.0. 

3 .  R e s u l t s  a n d  d i s c u s s i o n  

The iterative scheme outlined above was applied successfully to the problem of the 
two-dimensional expanding jet. The method was found to be convergent for the whole 
range of surface tensions considered, the convergence being faster for the finer discretisa- 
tions. As expected, convergence was far more rapid for the larger surface tensions since 
the free surface profiles were then only small perturbations from the straight line 
extension of the solid plate. Converged solutions were obtained in an average of three to 
four iterations, the exceptional case of very small T a n d  small N requiring as many as 
seven. 

The free surface profiles generated by the 280 node BBIE are displayed graphically in 
Fig. 2 and are in agreement with those presented in [7], although as expected, neither the 
FE or the BBIE method shed any light on the solution behaviour near S. 

In Fig. 3 we present the velocity distributions on the channel centreline y = 0 and the 
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Figure 3. Velocity distributions on the channel centreline and free surface for T = 0.001 and N = 280. 
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-2  -1 0 1 2 

F i g u r e  4. Veloc i ty  d i s t r i bu t i ons  o n  the c h a n n e l  cent re l ine  a n d  free su r face  for  T = 1000 a n d  N = 280. 

free surface y = 7/(x) for a surface tension of T = 0.001. Both velocities are plotted against 
the distance along the channel centreline and were produced by the 280 node BBIE. 
Figure 4 shows corresponding results for T =  1000. The results of Figs. 3 and 4 are 
graphically indistinguishable from those presented in [7] which were produced by the FE 
method for the same values of T. Further, the results of Fig. 4 are graphically indis- 
tinguishable from Richardson's [10] analytic solution. Figures 3 and 4 illustrate how the 
downstream velocity attains its asymptotic value as little as 2.5 channel widths away from 
the initial expansion - a result consistent with the behaviour suggested in [10]. 

In Table 1 we present the percentage swell values obtained from each BBiE discretisa- 
tion for each surface tension in the range considered. Also shown are the iterations 
required in order to satisfy the necessary convergence criteria. Iterations were continued 
until the swells could be quoted to an accuracy of three significant figures (SF) for the 
higher surface tensions and four SF for the lower. Had only three SF accuracy been 
required at each surface tension, the number of iterations required would never had 
exceeded three for any combination of T and N. Corresponding swells obtained from the 
FE method [7], where available, are also presented and are seen to be in good agreement 

T a b l e  1 

A c o m p a r i s o n  o f  the p e r c e n t a g e  swells o b t a i n e d  wi th  the  BBIE  a n d  the  F E  f r o m  [7] 

N o n  d i m e n s i o n a l  BIE  resul ts  

su r f ace  t ens ion  N = 70 
T 

F E  resul ts  f r o m  [7] 

N = 140 N = 280 M e s h  I M e s h  II M e s h  III  

% swell I ters  % swell I ters  % swell I ters  % swell % swell % swell 

1000  0.031 3 0.031 2 0.031 2 - - - 

100 0 .30 3 0.30 2 0.31 2 0.2 0.2 0.2 

10 1.92 4 1.99 3 2.02 2 1.8 1.8 1.7 

1 10.22 4 10.36 5 10.44 4 10.0 10.1 10.0 

0.1 16.47 7 16.56 3 16.54 3 16.5 16.8 17.2 

0.01 16.82 6 16.62 4 16.71 3 - - - 

0.001 17.87 7 17.72 4 17.81 3 17.4 17.7 18.2 
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with those generated by the BBIE. For completeness we provide the characteristics of the 
different FE meshes used by Ruschak [7]: 

MeshI  - 72elements, 442unknowns , -0 .67~<x~<3.33 ,  0~<y~<l,  

Mesh II - 128 elements, 748 unknowns, - 0.75 ~< x ~< 3.25, 0 ~< y ~< 1, 

Mesh III - 230 elements, 1302 unknowns, - 0.75 ~< x ~< 3.25, 0 ~< y ~< 1, 

where the regions of solution have been transformed into the coordinates used in the 
present work. Note that the FE results were obtained in an appreciably smaller solution 
domain. 

4. Conclusions 

An iterative BBIE method has been presented which is able to solve viscous free-surface 
flows for a wide range of surface tensions. Application of the free-surface boundary 
conditions is very straightforward using the present formulation, even when the boundary 
location is unknown. The method requires a knowledge of the asymptotic form of the 
solution for large surface tension and so is applicable to any such problem for which this 
asymptotic form is obtainable. Unlike the usual space discretisation techniques such as the 
FD or FE method, the present method requires information on the boundary only and so 
lends itself ideally to the solution of free surface problems since it does not evaluate data 
in the interior of the solution domain at each iteration. 

It is hoped to develop the method to deal with the flows associated with lubrication 
technology, for example as in [20,21] as such methods would prove useful in the solution 
of coating problems [22,23] encountered in polymer processes. 
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